Alien intelligence: the extraordinary minds of octopuses and other cephalopods

View original article here.

Inches above the seafloor of Sydney’s Cabbage Tree Bay, with the proximity made possible by several millimetres of neoprene and a scuba diving tank, I’m just about eyeball to eyeball with this creature: an Australian giant cuttlefish.

Even allowing for the magnifying effects of the mask snug across my nose, it must be about 60cm (two feet) long, and the peculiarities that abound in the cephalopod family, that includes octopuses and squid, are the more striking writ so large.

Its body – shaped around an internal surfboard-like shell, tailing off into a fistful of tentacles – has the shifting colour of velvet in light, and its W-shaped pupils lend it a stern expression. I don’t think I’m imagining some recognition on its part. The question is, of what?

It was an encounter like this one – “at exactly the same place, actually, to the foot” – that first prompted Peter Godfrey-Smith to think about these most other of minds. An Australian academic philosopher, he’d recently been appointed a professor at Harvard.

While snorkelling on a visit home to Sydney in about 2007, he came across a giant cuttlefish. The experience had a profound effect on him, establishing an unlikely framework for his own study of philosophy, first at Harvard and then the City University of New York.

The cuttlefish hadn’t been afraid – it had seemed as curious about him as he was about it. But to imagine cephalopods’ experience of the world as some iteration of our own may sell them short, given the many millions of years of separation between us – nearly twice as many as with humans and any other vertebrate (mammal, bird or fish).

Elle Hunt with an Australian giant cuttlefish at Cabbage Tree Bay, Manly, Sydney. Photograph: Peter Godfrey-Smith

Elle Hunt with an Australian giant cuttlefish at Cabbage Tree Bay, Manly, Sydney. Photograph: Peter Godfrey-Smith

Cephalopods’ high-resolution camera eyes resemble our own, but we otherwise differ in every way. Octopuses in particular are peculiarly other. The majority of their 500m neurons are in their arms, which can not only touch but smell and taste – they quite literally have minds of their own.

That it was possible to observe some kind of subjective experience, a sense of self, in cephalopods fascinated Godfrey-Smith. How that might differ to humans’ is the subject of his book Other Minds: The Octopus, The Sea and the Deep Origins of Consciousness, published this month by HarperCollins.

In it Godfrey-Smith charts his path through philosophical problems as guided by cephalopods – in one case quite literally, when he recounts an octopus taking his collaborator by hand on a 10-minute tour to its den, “as if he were being led across the sea floor by a very small eight-legged child”.Charming anecdotes like this abound in Godfrey-Smith’s book, particularly about captive octopuses frustrating scientists’ attempts at observation.

A 1959 paper detailed an attempt at the Naples Zoological Station to teach three octopuses to pull and release a lever in exchange for food. Albert and Bertram performed in a “reasonably consistent” manner, but one named Charles tried to drag a light suspended above the water into the tank; squirted water at anyone who approached; and prematurely ended the experiment when he broke the lever.

Most aquariums that have attempted to keep octopuses have tales to tell of their great escapes – even their overnight raids of neighbouring tanks for food. Godfrey-Smith writes of animals learning to turn off lights by directing jets of water at them, short-circuiting the power supply. Elsewhere octopuses have plugged their tanks’ outflow valves, causing them to overflow.

This apparent problem-solving ability has led cephalopods (particularly octopuses, because they’ve been studied more than squid or cuttlefish) to be recognised as intelligent. Half a billion neurons put octopuses close to the range of dogs and their brains are large relative to their size, both of which offer biologists a rough guide to brainpower.

The coconut octopus is one of the few cephalopods known to exhibit the behaviour of using a tool. Photograph: Mike Veitch/Alamy

The coconut octopus is one of the few cephalopods known to exhibit the behaviour of using a tool. Photograph: Mike Veitch/Alamy

In captivity, they have learned to navigate simple mazes, solve puzzles and open screw-top jars, while wild animals have been observed stacking rocks to protect the entrances to their dens, and hiding themselves inside coconut shell halves.

But that’s also reflective of their dexterity: an animal with fewer than eight legs may accomplish less but not necessarily because it is more stupid. There’s no one metric by which to measure intelligence – some markers, such as tool use, were settled on simply because they were evident in humans.

“I think it’s a mistake to look for a single, definitive thing,” says Godfrey-Smith. “Octopuses are pretty good at sophisticated kinds of learning, but how good it’s hard to say, in part because they’re so hard to experiment on. You get a small amount of animals in the lab and some of them refuse to do anything you want them to do – they’re just too unruly.”

He sees that curiosity and opportunism – their “mischief and craft”, as a Roman natural historian put it in the third century AD – as characteristic of octopus intelligence.

Their great escapes from captivity, too, reflect an awareness of their special circumstances and their ability to adapt to them. A 2010 experiment confirmed anecdotal reports that cephalopods are able to recognise – and like or dislike – individual humans, even those that are dressed identically.

It is no stretch to say they have personalities. But the inconsistencies of their behaviour, combined with their apparent intelligence, presents an obvious trap of anthropomorphism. It’s “tempting”, admits Godfrey-Smith, to attribute their many enigmas to “some clever, human-like explanation”.

A paradox: octopuses have big brains and short life spans. Photograph: Peter Godfrey-Smith

A paradox: octopuses have big brains and short life spans. Photograph: Peter Godfrey-Smith

Opinions of octopus intelligence consequently vary within the scientific community. A fundamental precept of animal psychology, coined by the 19th-century British psychologist C Lloyd Morgan, says no behaviour should be attributed to a sophisticated internal process if it can be explained by a simpler one.

That is indicative of a general preference for simplicity of hypotheses in science, says Godfrey-Smith, that as a philosopher he is not convinced by. But scientific research across the board has become more outcome-driven as a result of the cycle of funding and publishing, and he is in the privileged position of being able to ask open-ended questions.

“That’s a great luxury, to be able to roam around year after year, putting pieces together very slowly.”

That process, set in motion by his chance encounter with a cuttlefish a decade ago, is ongoing. Now back based in Australia, lecturing at the University of Sydney, Godfrey-Smith says his study of cephalopods is increasingly influencing his professional life (and his personal one: Arrival, the 2016 film about first contact with “cephalopod-esque” aliens, was a “good, inventive film”, he says, though the invaders “were a bit more like jellyfish”).

When philosophers ponder the mind-body problem, none poses quite such a challenge as that of the octopus’s, and the study of cephalopods gives some clues to questions about the origins of our own consciousness.

Our last common ancestor existed 600m years ago and was thought to resemble a flattened worm, perhaps only millimetres long. Yet somewhere along the line, cephalopods developed high-resolution, camera eyes – as did we, entirely independently.

“A camera eye, with a lens that focuses an image on a retina – we’ve got it, they’ve got it, and that’s it,” says Godfrey-Smith. That it was “arrived at twice” in such vastly different animals gives pause for thought about the process of evolution, as does their inexplicably short life spans: most species of cephalopods live only about one to two years.

“When I learned that, I was just amazed – it was such a surprise,” says Godfrey-Smith, somewhat sadly. “I’d just gotten to know the animals. I thought, ‘I’ll be visiting these guys for ages.’ Then I thought, ‘No, I won’t, they’ll be dead in a few months.’

It’s perhaps the biggest paradox presented by an animal that has no shortage of contradictions: “A really big brain and a really short life.” From an evolutionary perspective, Godfrey-Smith explains, it does not give a good return on investment.

“It’s a bit like spending a vast amount of money to do a PhD, and then you’ve got two years to make use of it ... the accounting is really weird.”

One possibility is that an octopus’s brain needs to be powerful just to preside over such an unwieldy form, in the same way that a computer would need a state-of-the-art processor to perform a large volume of complex tasks.

“I mean, the body is so hard to control, with eight arms and every possible inch an elbow.” But that explanation doesn’t account for the flair, even playfulness with which they apply it.

“They behave smartly, they do all these novel, inventive things – that line of reasoning doesn’t resolve things, by any stretch,” says Godfrey-Smith. “There’s still a somewhat mysterious element there.”

  • Other Minds: The Octopus and the Evolution of Intelligent Life is published by William Collins. To order a copy for £17 (RRP £20) go to bookshop.theguardian.com or call 0330 333 6846. Free UK p&p over £10, online orders only. Phone orders min p&p of £1.99. It is out through Harper Collins in Australia.

The Lagoon Society Umbrella ☔

Those of you who follow the Lagoon Society will know that we have a quite a few different projects on the go! We often get asked how these projects are connected and what exactly they involve. Well, here's a brief run down. If you want to learn more, we'd be happy to connect with you!

Making Progress!

Last week our Executive Director and our architect, Jeremiah Deutscher, met with a wonderful group of engineers from Associated Engineering in Burnaby. Mark Porter and his team kindly volunteered to help us look into all the different studies which we may need to conduct in order to ensure we don't leave a stone unturned in our due diligence over the purchase of Irvine's Landing. Members of his team will be on hand to present their findings at our PODS Discussion Forum to be held at The Music School in Madeira Park on the 8-9th April. We very much look forward to seeing you there.

Coastal wetlands excel at storing carbon

View the original article here.

Salt marshes, such as this one in the Waquoit Bay National Estuarine Research Reserve in East Falmouth, Massachusetts, capture and store large amounts of carbon dioxide from the atmosphere every year. Credit: Ariana Sutton-Grier

Salt marshes, such as this one in the Waquoit Bay National Estuarine Research Reserve in East Falmouth, Massachusetts, capture and store large amounts of carbon dioxide from the atmosphere every year.

Credit: Ariana Sutton-Grier

In the global effort to mitigate carbon dioxide levels in the atmosphere, all options are on the table -- including help from nature. Recent research suggests that healthy, intact coastal wetland ecosystems such as mangrove forests, tidal marshes and seagrass meadows are particularly good at drawing carbon dioxide from the atmosphere and storing it for hundreds to thousands of years.

Policymakers are interested to know whether other marine systems -- such as coral reefs, kelp forests, phytoplankton and fish -- can mitigate climate effects. A new analysis co-authored by a University of Maryland scientist suggests that, while coastal wetlands serve as effective "blue carbon" storage reservoirs for carbon dioxide, other marine ecosystems do not store carbon for long periods of time.

The research paper, published February 1, 2017 in the journal Frontiers in Ecology and the Environment, also notes that coastal wetlands can help protect coastal communities from storm surges and erosion. Coastal wetland areas are easier for governments to manage compared with ecosystems that reside in international waters, further adding to the strategic value of coastal wetlands in the fight against climate change.

"We compared many different coastal ecosystems and have made a clear case for including coastal wetlands in discussions about greenhouse gas mitigation," said Ariana Sutton-Grier, an assistant research scientist at UMD's Earth System Science Interdisciplinary Center and a co-lead author of the research paper. "Coastal wetlands store a lot of carbon in their soils and are important long-term natural carbon sinks, while kelp, corals and marine fauna are not."

The research paper integrates previous data on a variety of coastal and marine ecosystems to determine which systems are best suited to mitigate climate effects. To make this assessment, Sutton-Grier and her colleagues evaluated how effectively each ecosystem captures carbon dioxide -- for example, by plants using it to build their branches and leaves -- and how long the carbon is stored, either in plant tissues or in soils.

Coastal wetlands outperformed other marine systems in just about every measure. For example, the researchers estimated that mangrove forests alone capture and store as much as 34 million metric tons of carbon annually, which is roughly equivalent to the carbon emitted by 26 million passenger cars in a year. Estimates for tidal marshes and seagrass meadows vary, because these ecosystems are not as well mapped globally, but the total for each could exceed 80 million metric tons per year.

All told, coastal wetlands may capture and store more than 200 metric tons of carbon per year globally. Importantly, these ecosystems store 50-90 percent of this carbon in soils, where it can stay for thousands of years if left undisturbed.

"When we destroy coastal wetlands, for coastal development or aquaculture, we turn these impressive natural carbon sinks into additional, significant human-caused greenhouse gas sources," said Sutton-Grier, who is also an ecosystem science adviser for the National Ocean Service at the National Oceanic and Atmospheric Administration.

The researchers' goal is to help inform resource managers and policymakers where to focus their limited resources to have the greatest impact on climate mitigation. The new analysis acknowledges that other ecosystems, such as coral reefs and kelp forests, provide valuable storm and erosion protection, key fish habitat and recreation opportunities, and thus deserve protection. But their capacity to store carbon over the long term is limited.

"A common question I get from coastal managers and other stakeholders is whether oyster reefs, coral and kelp are effective 'blue carbon' habitats," said Stefanie Simpson, a co-author of the paper and manager of the Blue Carbon program at the nonprofit organization Restore America's Estuaries. "This paper highlights the role all of these ecosystems have in the carbon cycle, while calling out our coastal habitats -- marsh, seagrass and mangroves -- for their role as significant and long-term carbon stores."

Researchers have often looked to terrestrial forests as carbon sinks as well. But most forests do not store substantial amounts of carbon in their soils. As such, the researchers believe that coastal "blue carbon" habitats may stand alone as the most efficient biological reservoirs of stored carbon on Earth.

"The concept of 'blue carbon' has focused scientists and stakeholders on the tremendous potential of managing marine ecosystems for climate mitigation," said Patrick Megonigal, associate director for research at the Smithsonian Environmental Research Center, who reviewed an early draft of the manuscript but was not directly involved in the work. "This analysis takes a big step forward by explaining why coastal wetland ecosystems are particularly attractive for carbon-based management."

PODS Talks

Have you checked out PODS Talks yet?

As part of the development of PODS we are conducting a series of informal interviews with some of the most respected researchers and movers and shakers in British Columbia to find out what they think about PODS. 

Over the coming months PODS PEOPLE will be out and about with their video cameras, asking many more great researchers, innovators, local residents and entrepreneurs for their views to help us maximize the potential value of the PODS facilities.

Please go to our PODS TALKS page on the new OPEN PODS website and listen to what these amazing people have to say about PODS!

Professor Hans Schreier
Emeritus Professor, Land & Water Systems at UBC
READ BIO

Dr. Dolph Schluter
Canadian Research Chair at UBC
READ BIO

Dr. Arne Mooers
Professor. Biodiversity, Phylogeny & Evolution at SFU
READ BIO

Dr. Andrew Day
Vice-President of the Vancouver Aquarium Marine Science Centre
READ BIO

When will our electricity come from the sea?

View the original article from BBC News here.

If you've ever struggled to walk across the deck of a boat as it rolls in a choppy sea, or tried to stand up against breaking waves at the beach, you'll have felt the might of the ocean.

It feels like there's a lot of power there too, so getting energy from the waves of the sea sounds as if it's got real potential. For World Service listener Michael McFarlane, it's a question that's been on his mind for years.

"I live in Jamaica and we are never very far from the sea… Electricity generation [here] is mainly based on fossil fuels," he says.

So why isn't the ocean powering Michael's home yet?

In order to tackle this question for the World Service programme Crowdscience, first, there was a language problem to unpick.

Deborah Greaves, Professor in Ocean Engineering and Director of the COAST Laboratory at the UK's Plymouth University explains: "We've tended to use "marine renewable energy" to describe wave and tidal energy…[it's] energy which can be extracted from the movement of the oceans in the marine environment."

Large tidal power generators already exist in selected locations around the world - the La Rance River estuary plant in Brittany, France, opened in 1966, and the world's current largest tidal power station is at Sihwa Lake in Gyeonggi Province, South Korea, costing 313.5 billion South Korean won (£212 million GBP or $263 million USD).

Expense is one factor that currently limits the worldwide number of tidal power plants. Environmental concerns are another, as some places with particularly strong tides are also sensitive ecosystems, such as estuaries.

And there's one more detail that's particularly relevant for listener Michael: As anyone who's been lucky enough to spend time on a beach in Jamaica knows, the tides there don't go in and out that much. It can be by as little as centimetres, compared with metres at a time in other locations around the world.

Early development

For our programme, this means we turn to wave power, which, as Prof Greaves tells us, is still in the early stages of development. "Wave energy on the other hand involves extracting the wave energy motion in a device, and there are a huge number of different approaches to how you can do this."

Out at sea, water doesn't always move as predictably as in a tide. Ocean waves are whipped up by winds, and can be all over the place, interacting from all directions. It's this irregularity and difference which means that energy can be harvested in many ways, and there are thousands of patents registered for a whole variety of different approaches.

A test site in Falmouth Bay is helping wave energy device developers move their models forward

A test site in Falmouth Bay is helping wave energy device developers move their models forward

You can get some idea from the devices' myriad of names, which include: The Limpet, the Frog, Mighty Whale, Wave Roller, Wave Dragon, the Oyster, and the Penguin. The latter bobs up and down in the sea like a real penguin does - although it looks a bit like a cartoon block of cheese - some names aren't totally representative.

But, variety and excellent names aside, what has the most potential to generate our electricity - wave or tidal? "There's more potential for wave energy in terms of the resource because the tidal resource tends to be located in specific positions round the coastline.

"So there's actually a greater potential for wave energy, but at the moment it's further off being commercially developed," says Deborah Greaves.

At the Coastal Ocean and Sediment Transport laboratory at Plymouth University in the UK, Professor Greaves oversees new wave power devices being tested in their giant Ocean Wave Basin. Over 100 cars could be parked inside the 35m long, 15m wide and up to 3m deep tank - if it weren't full of water.

Ocean simulator

And at one end, there are 24 paddles that can be individually controlled to generate waves approaching 1m in height. This means that a variety of waves can be created - from the sort of waves that you might see at the beach, to a much more mixed-up surface with different sized and timed waves from many directions, which the COAST team call a sea state.

As big as this sounds, this is only laboratory scale - it's not a patch on the open ocean, but it's where wave energy devices start out. Deborah explains: "We can only go up to a certain scale here...and so in order to really understand how your device is going to perform in the sea, and some of the additional challenges in installing it and getting it to survive in a marine environment.

"All of those things we can't test but they can be tested at larger scale at a nursery site in the sea."

FaB Test in Falmouth Bay is one such place. Heading out about a mile into the sea on a research vessel illustrated how this stage helps wave energy device developers move their models forward.

"It enables us to make sure that we have access to the devices... At the same time, this area here is providing us with very rough and extreme conditions. We have seen waves close to 10m," said Prof Lars Johanning of Exeter University, casually leaning on one leg and maintaining impressive stability whilst the CrowdScience team clung on to the boat rails and their microphones.

"In the real world as you've just experienced here... you've got waves from different directions, you've got a current, you've got wind, you've got salt water - so you've got corrosion," Prof Johanning explains.

"It's a small thing that goes wrong quite often unfortunately but it stops you from going further. Or of course then, you address it."

Prof Johanning tells us that the real challenge for wave energy devices is surviving extreme conditions. "You would like to have very nice looking waves from one direction if possible... very smooth and regular. That is not the real sea. The real sea is a bit different unfortunately so you have to overcome this. We can design for these conditions but we also have to make sure that it is cost effective."

Once safely off the boat and back in the car, we set off from the nursery site towards what we were affectionately terming as 'big school' for wave energy devices (much to our contributors' amusement). Here, standing on a glorious and very windy beach, we met Stuart Herbert, Commercial Director of Wave Hub Ltd.

Extension lead

"Wave Hub you can think of as a large electrical extension lead. So we have a cable which is 25km long - very thick cable - and it goes underneath the sand we're standing on and heads out to the sea and ends up about 10 miles off [the town of] St Ives," said Stuart.

Given the wind and wintry conditions, this was the closest we could get today - thankfully. Mr Herbert tells us: "[The conditions have been] as high as 15 metres in the last couple of years.

"Bigger is better to a certain extent but these devices have to survive out there… This site has an excellent wave resource and a good place where we can connect to the National Grid… There's other places like Australia, Western Ireland, Portugal, France, Spain also have very good wave resource."

So what does he think about listener Michael McFarlane's question: Could the energy of the sea provide us with all our electricity?

"What a fantastic question! And Jamaica has a good wave resource." A promising start. But what's the timeline, and could it happen?

"It has been estimated that there's more than twice as much wave energy out there than is required to power the whole world. However, capturing that wave energy, capturing this wild and unpredictable resource, is quite a challenge. It's going to take some time for these devices to get to a commercial stage where we can deploy them in multiple numbers all over the world.

"Would we ever get to a stage where we can power the whole world from wave energy? I have to be absolutely honest with you and say that's really not going to happen. There have been some estimates made that it could be 15-20% in the UK."

So, not all of our electricity then. But island communities could still make use of some wave power in the future, especially because, as Mr Herbert says, "A lot of island communities at the moment either have no power or get their power from expensive sources like diesel generators."

Michael was far from wrong in thinking that the sea appears to offer this vast resource of free power. But the challenge is making devices that can harvest the most energy from those unpredictable waves, in a cost effective manner, and survive the relentless bruising and battering of the environment.

As Stuart Herbert concludes: "Wind turbines have been around for at least 20 years... Wave energy is at least 10 years behind that. So 10 years from now I would imagine that we'll start seeing commercial arrays of wave energy devices producing really useful amounts of power."

BBC CrowdScience, Wave Power first airs on the World Service at 1132 GMT on Saturday 24th December. Listen online and download the podcast.